Samir Akre

Background

COVID-19 mortality forecasting models provide critical information about the trajectory of the pandemic to **guide decision-making**. There are many forecasting groups making it difficult to assess which to trust and why. <u>Covidcompare.io</u> was built to **enable comparisons of top forecasting groups** and offer insight into how each has performed over the course of the pandemic.

Methods

Data and Code

- Data aggregation framework from Friedman, Liu et al Nature Communications 2021
- Front-end: Next.js and React
- Back-end: SQL
- Open source: github.com/covidcompare

Website Layout and Design

- Model Forecast: View current forecasts any country or U.S. state
- Model Performance: View a heatmap depicting historical error across different models in different regions
- Historical Errors: View all versions of a single modeling groups forecasts in a country or U.S. state

Usability Testing

- Post-study System Usability Questionnaire (PSSUQ)
- Administered to 8 participants

Results

- >5k Unique users globally and 20k page visits
- Usability scores better than benchmark

Figure 1. Performance of covidcompare.io (n=8 participants) and benchmark comparison from 21 studies (n=210 participants) on usability metrics. Error bars indicate 99% confidence intervals.

Covidcompare.io Compare the top COVID-19 mortality forecasts *globally*

Samir Akre, Patrick Y. Liu, Joseph R. Friedman, Alex A. T. Bui Submitted Manuscript

Model Forecast Page

United States

^{* 7} day moving average filter used for smoothing

Model Performance Page

Historical Errors Page

Modeling Group

✓ IHME-MS-SEIR

UCLA-ML

Delphi

Imperial

SIKJalpha

LANL